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The response of a mixing layer formed between
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Simultaneous excitation of a turbulent mixing layer by two frequencies, a fundamen-
tal and a subharmonic, was investigated experimentally. Plane perturbations were
introduced to the flow at its origin by a small oscillating flap. The results describe
two experiments that differ mainly in the amplitudes of the imposed perturbations
and both are compared to the data acquired while the mixing layer was forced at a
single frequency.

Conventional statistical quantities such as: mean velocity profiles, widths of the
flow, turbulent intensities, spectra, phase-locked velocity and vorticity fields, as well
as streaklines were computed. The rate of spread of the flow under concomitant
excitation at the two frequencies was much greater than under a single frequency,
although it remained dominated by two-dimensional eddies. The Reynolds stresses
and turbulence production are associated with the deformation and orientation of the
large coherent vortices. When the major axis of the coherent vortices starts leaning
forward on the high-speed side of the flow, the production of turbulent energy changes
sign (i.e. becomes negative) and this results in the flow thinning in the direction of
streaming. It also indicates that energy is extracted from the turbulence to the mean
motion. Resonance phenomena play an important role in the evolution of the flow. A
vorticity budget showed that the change in mean vorticity was mainly caused by the
nonlinear interaction between coherent vorticities. Nevertheless, the locally dominant
frequency scales the mean growth rate, the inclination and distortion of the mean
velocity profiles as well as the phase-locked vorticity contours.

1. Introduction
The turbulent mixing layer serves as a prototypical free shear flow and it has

therefore been frequently investigated. At first, the research was limited to a statistical
description of the flow, but since the 1960s, it gradually focused on conditional
statistics and on coherent structures (Wygnanski & Fiedler 1970; Brown & Roshko
1974; Winant & Browand 1974; Browand & Weidman 1976; Wygnanski et al. 1979;
Hussain 1983; etc.). After it was realised that the coherent structures play a central role
in the evolution of the turbulent mixing layer, artificial excitation was soon to follow
(Oster et al. 1978; Ho & Huang 1982; Oster & Wygnanski 1982; Fiedler & Mensing
1985; Gaster, Kit & Wygnanski 1985). The experimental procedures adapted were
similar to those used in defining the stability of laminar flows (Sato 1960; Browand
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1966; Freymouth 1966; etc.) Fiedler et al. (1981), Oster & Wygnanski (1982) and
Monkewitz & Huerre (1982) used parallel, linear stability analysis to predict the most
amplified frequencies and the amplification rates of the large eddies in the externally
excited turbulent mixing layer. Others used modelling and numerical simulation to
obtain similar results (Patnaik, Sherman & Corcos 1976; Acton 1976; Ashurst 1979;
Riley & Metcalfe 1980; Corcos & Sherman 1984; Inoue & Leonard 1987; Inoue
1989). Gaster et al. (1985) have demonstrated the significance of flow-divergence on
the evolution of the large, turbulent coherent structures and the ability of the stability
approach to predict them in great detail. All of these articles revealed that selective,
periodic disturbances strongly influence the coherent structures in the flow and its
development in the direction of streaming. Weakly nonlinear analysis that was applied
to laminar flow (Kelly 1967; Monkewitz & Huerre 1982) suggested that a turbulent
mixing layer might be more sensitive to an external excitation by two frequencies, a
fundamental and its subharmonic, because the amplification of the latter could be
affected by the presence of the former. Experiments (Zhang, Ho & Monkewitz 1984;
Wygnanski & Petersen 1987) and numerical simulations (Inoue 1989, 1992) revealed
that a concomitant periodic forcing at these two frequencies affected the evolution
of coherent structures and increased the spreading rate of the mean flow beyond the
values attained by single-frequency excitation.

The role of the mixing layer in controlling separation was reinforced recently by
the quest to delay flow separation through controlled periodic perturbations. The
relation was first articulated by Katz, Nishri & Wygnanski (1989) and by Neuburger
& Wygnanski (1988) who showed that detached flow forms a mixing layer that
separates between a ‘dead-water’ region adjacent to the surface and a constant
velocity stream further away from it. The mean streamlines in the ‘free stream’ above
such a mixing layer are not curved and they do not diverge in the direction of
streaming. Consequently, we would like to generate a sufficient pressure difference
across this mixing layer forcing it to bend toward the surface. This may be attained by
enhancing the entrainment (pumping) of fluid by the mixing layer from the limiting
reservoir of fluid bound by it and by the solid surface. Thereafter, the continuous
pumping action of the large eddies scouring the surface may keep the mixing layer
adjacent to the surface. We are interested, therefore, in exploring the role of the dual
frequency excitation in promoting flow reattachment and in its maintenance.

Since the mixing layer is, perhaps, the simplest turbulent shear flow occurring in
nature, a better understanding of its features may improve our understanding of
turbulence in general. For example, what is the role of large coherent structures in the
production of turbulence, how does it relate to nonlinear wave interactions, how do
we assess the interrelation between coherent structures and typical random quantities?
The measurements carried out by I. Weisbrot (unpublished Tel Aviv University 1984)
provide some information on the above-mentioned problems. For example, the various
Reynolds stresses (both coherent and incoherent) have been carefully scrutinized in
order to explain the dependence of the flow on coherent structures and on the various
interactions among them.

2. Experimental considerations
The experiments were carried out in a facility described by Oster & Wygnanski

(1982) and slightly modified by Weisbrot & Wygnanski (1988), where the effects of
single-frequency excitation were investigated extensively and the meaning of ‘pairing’
under dual-frequency excitation was discussed. Three sets of data are acquired. They
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represent a mixing layer formed between two parallel streams of different velocities
whose ratio, R = (U1 −U2)/(U1 +U2) = 0.25 throughout. Measurements were made
across the flow starting at x = 200 mm from the splitter plate and terminating at
x = 1720 mm, thus encompassing three-quarters of the 2 m long test section in order
to avoid undesirable end effects, particularly near the exit. The streamwise interval
between adjacent measuring stations was only 20 mm in order to resolve spatially the
large coherent structures in the flow. The boundary layers on both sides of the splitter
plate were turbulent. The flow was excited by a small flap hinged to the trailing edge
of the splitter plate and oscillating at a maximum amplitude of 4 mm. This provided
a maximum initial (measured x = 200 mm) mean coherent disturbance level summed
over both directions of approximately 7%. To obtain this number, the phase-locked
ensemble-averaged and filtered streamwise and normal velocity perturbations were
integrated across the flow and divided by the width of the measuring region of the
mixing layer and its average velocity, i.e.

Af =

∫ ymax

ymin

√〈u〉2 + 〈v〉2dy
1
2
(ymax − ymin)(U2 +U2)

Two components of velocity were measured instantaneously at 7 transverse loca-
tions across the mixing layer by using a hot-wire rake containing 14 wires configured
in 7 ×-wire arrays. The rake was traversed across the flow until the velocity gradi-
ents and the turbulent intensities vanished. Two reference signals and all individual
velocity components were digitized and stored. The lowest-frequency forcing signal
was used as a reference to ensemble-average the data.

In order to check the experimental procedure (i.e. repeat earlier experiments) and
provide data at sufficiently small spatial resolution, the excitation for the first data
set was made at a single (fundamental) frequency and is hereinafter referred to as
the SF case. The free-stream velocities selected were 10 and 6 m s−1, respectively,
as in previous experiments. The excitation frequency of 45 Hz was chosen as it
provided a perturbation that had undergone its maximum amplification (i.e. it became
neutrally stable) in the centre of the test section. The displacement amplitude of
the fliperon, that provided an average 4.8% excitation-level at the first measuring
station, was only 1.5 mm. When the real experiment started at two concomitant
frequencies of excitation, this level of initial, threshold disturbance demanded too
high a displacement amplitude from the flap thus contaminating the initial signal with
other harmonics. It was therefore decided to lower the velocities to 8 and 4.8 m s−1,
respectively while maintaining the same velocity ratio R = 0.25. The excitation
frequency had to be reduced to f = 36 Hz in order to change the wavelength of
the disturbance, (λ = (U1 + U2)/2f), and thus maintain the dimensionless scaling
parameter for the single-frequency excitation, Rx/λ, unchanged.

When the oscillating flap was excited simultaneously by the two frequencies at
its maximum ‘clean’ displacement amplitude of 4 mm at the lower tunnel speed, the
combined amplitude level of the phase-locked disturbance was 7.1%. In that case,
the displacement-amplitude of the fliperon at both frequencies was almost identical.
The disturbance level of the two frequencies at the initial measuring station (200 mm
downstream of the fliperon’s trailing edge and corresponding approximately to a
single wavelength of the fundamental perturbation) was also close (5.2% versus
4.9%). This data set was labelled ‘two frequencies-strong’ (TFS). In view of the
unexpected characteristics of this mixing layer, it was decided to reduce the total
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Figure 1. Momentum thickness and integration of production across the layer. (a) SF. (b) TFW.
(c) TFS. e, momentum thickness θ (mm); �,

∫
u′v′(∂U/∂y)dy/50 (m3 s−3).

level, of excitation to half of its original, 3.4%. This case is referred to as ‘two
frequencies-weak’ (TFW).

The phase between the two perturbations was maintained constant at both exci-
tation levels, because it was believed that the divergence of the mean flow would
preclude the possibility of resonance. This opinion was formed because the phase
velocity of any unstable disturbance in a divergent mean flow varies with x and
y (Crighton & Gaster 1976; Gaster et al. 1985). However, this view was altered
later, when Paschereit, Wygnanski & Fiedler (1995) demonstrated experimentally that
partial resonance (i.e. not across the entire flow) is possible in an axisymmetric,
divergent mixing layer and that it depends on the initial phase angle between the
fundamental and the subharmonic frequency.

The instantaneous velocity was decomposed into a time mean quantity, a phase
locked fluctuation 〈u〉 and the random residue: u = U + 〈u〉 + ur . We are fully
aware that the coherent portion of the motion may be smeared-out by phase jitter
and therefore poorly represented by a phase-locked and ensemble-averaged quantity
(Zhou, Heine & Wygnanski 1996). However, the phase jitter of the dominant structures
in the present flows was quite small. The coherent energy and Reynolds stresses
obtained from simple, phase-locked data and from the more complex, temporal
pattern matching (Zhou et al. 1996), were not materially different. Consequently,
only the conventional phase-locked and ensemble-averaged results are presented.
Various aspects of the coherent motions, including phase-locked turbulent energy and
Reynolds stress, phase and amplitude distributions of the individual components of
the disturbances, coherent vorticity contours and coherent streaklines were calculated
from the data. Based on these results, the relation between coherent motions and the
growth of the layer was observed.

3. Results and discussion
3.1. The mean flow

Streamwise distributions of the momentum thickness (this is an integral lengthscale
whose integrand vanishes at both integration limits).

θ =

∫ ∞
−∞

U −U1

U2 −U1

[
1− U −U1

U2 −U1

]
dy,

are shown in figure 1 for the three different excitations considered. Although the
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Figure 2. Streamwise distribution of the boundary. 4, SF; �, TFW; �, TFS.

abscissa, x, in this and other figures is dimensional it may be converted to a dimen-
sionless Rx/λf by multiplying the distance in metres by 1.406. It can be seen that
the rate of spread of these flows differs from case to case, and also from region to
region in a single case. When the mixing layer was excited by a single frequency
(labelled SF) the momentum thickness increased up to x = 560 mm from the trailing
edge of the splitter plate (region 1 according to Oster & Wygnanski 1982). It then
ebbed and decreased with increasing streamwise direction up to x = 840 mm (region
2). Thereafter, it resumed its growth but at a lower rate. The data set labelled ‘two
frequencies-weak’ (TFW) shows a similar trend; however, its growth rate in region 1
is slightly smaller than the SF set. Its rate of spread in region 3, however, is almost
identical to that in region 1 and considerably larger than the corresponding region
for the SF excitation. Furthermore, the onset of region 2 starts further downstream
in this flow (x = 950 mm), nevertheless the final width of the flow at x = 1580 mm
was 25% larger than in the SF set. The momentum thickness resulting from stronger
excitation (the ‘two frequencies-strong’ (TFS) case) increases monotonically in the
direction of streaming, nevertheless, the initial rate of growth for x < 300 mm is much
larger than the final one. The final rate of growth in this case is almost the same as
the final rate of growth in the TFW experiment. It is clear that strong, concomitant
excitation at two frequencies can double the final width of the flow relative to the
single-frequency excitation.

The different rates of spread plotted in figure 1 show the dependence of the mean
flow on the excitation conditions. The spreading rate is tied, in turn, to the turbulence
production and, therefore, the latter is also plotted in figure 1 and will be discussed
later. In order to pinpoint the regions most affected by the external excitation, the
borders and the centre of the mixing layer were arbitrarily defined by three numbers
expressing the location on the mean velocity profile: Y0.1, Y0.95 and Y0.5 representing
the y-locations where the local mean velocity (U −U1)/(U2 −U1) = 0.1, 0.95 and
0.5. They represent both borders of the mixing layer and its centre, they are plotted
in figure 2. The lateral rate of spread of Y0.95 was initially (for x < 330 mm) quite
rapid for the SF excitation and for the TFS case, but it was almost nil for the TFW
excitation. At 330 < x < 550 mm the lateral rate of spread of Y0.95 increased for the
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Figure 3. Comparison between upstream and downstream regions of the normalized mean
velocity profiles. (a) SF. – – –, 0.2 m < x < 0.56 m; e, 0.84 m < x < 1.72 m. (b) TFW.
– – –, 0.16 m < x < 0.9 m; e, 1.24 m < x < 1.58 m. (c) TFS. – – –, 0.1 m < x < 0.24 m;e, 1.06 m < x < 1.34 m.

TFW excitation while it decreased for the other two cases. For 550 < x < 1340 mm,
Y0.95 stopped its lateral rate of spread in the TFW and SF excited flows, but it
increased its rate of spread for the TFS flow.

Whereas Y0.5 was identical for the TFW and SF excited flows through the entire
range of streamwise distances considered, it was displaced laterally toward the low-
speed stream for the TFS excitation at x > 550 mm. The lateral divergence between
Y0.95 and Y0.5 that occurred at x > 550 mm for the TFS test was largely responsible
for the final width of this flow at the end of the measurement domain. In contrast, the
SF excitation resulted in the convergence between Y0.1 and Y0.5 at 550 < x < 840 mm
that reduced the width of the flow in this range (region 2 in figure 1). Y0.1 maintained
its lateral rate of spread for the TFW flow up to x = 950 mm and was responsible
for the increased width of the mixing layer relative to the SF excitation. Y0.1 resumed
its lateral growth for this case only beyond x > 1400 mm, while in the interim
(950 < x < 1400 mm) it remained constant or even decreased slightly (figure 2).
Consequently, whereas for TFW and SF excitation most of the spreading rate (and
presumably mixing) occurs on the low-velocity side of the flow, it switches sides in
the TFS case. This observation deserves special attention as it may lead to improved
mixing through the use of active flow control. We may also note that Y0.1 undulates
for the TFS case up to X ≈ 600 mm, beyond which it spreads laterally in a linear
fashion as it does in an unexcited mixing layer.

Normalized mean velocity profiles, (U −U1)/(U2−U1), corresponding to the three
types of excitation are shown in figure 3. The ordinate in figure 3 is (Y − Y0.5)/θ,
and it is consistent with the definition of the centre of the mixing layer. The velocity
profiles in each region are self-similar, but the similarity does not extend throughout
the domain of measurement (i.e. between regions). For SF forcing, the slope of the
velocity profile, dU/dY on the low-speed side of region 1 (dashed line) is larger
than in region 3 (see symbols in figure 3a) while the opposite effect is seen on the
high-speed side. For TFW forcing, there is almost a perfect self-similarity between
regions 1 and 3 (figure 3b). In the case of TFS forcing at X > 1000 mm region (it is
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Figure 4. Reynolds stress distribution. (a) SF. (b) TFW. (c) TFS.

impossible to discuss this flow in terms of three distinct regions), there is a strong kink
in the mean velocity profile on the high-speed side that moves toward the centre with
increasing x (figure 3c). This deformation is closely related to the type of coherent
motion dominating the flow in a given region, as will be discussed later.

3.2. Reynolds stress and turbulent intensities

The lateral distributions of Reynolds stress and two components of the turbulent
intensity are shown in figures 4–6 for the three flows considered. The first and last
streamwise locations chosen correspond to regions 1 and 3 while the intermediate
locations represent data taken in region 2 and its boundaries (i.e. transition regions
between 1 and 2 and 2 and 3).

The Reynolds stresses are positive in regions 1 and 3 for SF and TFW (figure 4a, b)
where the momentum thickness also increases (see figure 1). However, the sign of
the Reynolds stress changes in region 2 and it is associated with a decrease of the
momentum thickness in the direction of streaming. Typically, close to the end of region
1 of the SF case (i.e. for X ∼= 540 mm in Fig. 2.1a), the shear stress on the high-speed
side of the mixing layer becomes gradually negative. At X = 560 mm, dθ/dX = 0 and
the integral of the shear stress across the layer vanishes as well. Around X = 800 mm
the Reynolds stress becomes positive again and with it dθ/dX > 0. This location
marks the transition to region 3 in figure 1. We may observe that the maximum
negative value of u′v′ occurs in the centre of the mixing layer in the SF case
(figure 4a).

The results for the TFW excitation are similar to the SF flow, in particular, the
correlation between the integral of the Reynolds stress across the flow and the location
corresponding to dθ/dX = 0. In region 2 (e.g. at X = 1080 mm), the shear stresses are
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Figure 5. Turbulence energy distribution, u-component. (a) SF. (b) TFW. (c) TFS.

negative across the layer. At X > 1120 mm, transition from regions 2 to 3 occurs and
the Reynolds stress becomes positive again (figure 4b). There are, however, interesting
differences between the TFW and the SF cases during the transition from regions 1
to 2. In the TFW flow, the negative shear stress appears first on the low-speed side
and remains there throughout region 2 and the transition region between 2 and 3.
For the SF flow the negative shear stress appears first in the centre, above (on the
high-speed side) the region of positive Reynolds stress. The transition from regions 2
to 3 is associated with the generation of a new zone of positive Reynolds stress on the
high-velocity side of the flow. This region diffuses toward the low-speed side of the
mixing layer with increasing X. Thus, whenever the Reynolds stress distribution has
an S shape in the TFW case, the zone of positive stress is always on the high-speed
side (see the lateral stress distributions at X = 1040 and 1120 mm in figure 4b) while
it switches from side to side in the SF experiment. In the TFS experiment dθ/dX > 0
everywhere, and thus the integral of the shear stress never changes its sign. Out of the
five locations plotted in figure 4(c), the first two are in a region of locally decaying
Reynolds stress, while the last three are in a region of local amplification. It will be
seen later that the abrupt increase in Reynolds stress for the last three locations is
related to a corresponding change in the form of the coherent structures.

The corresponding distributions of the u′ and v′ are plotted in figures 5 and 6. For
the SF excitation the distribution of the u′ at a given X contains two maxima separated
by a saddle point in the centre (see figure 5a at X = 540 and X > 600 mm) while
the v′ distribution contains a single maximum at the centre of the flow (figure 6a).
Such intensity distributions are indicative of a single row of travelling vortices. A
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Figure 6. Turbulence energy distribution, v-component. (a) SF. (b) TFW. (c) TFS.

similar observation can be made for the TFW excitation around X ≈ 980 mm. On
the other hand, for the TFW flow at X > 1400 and for the TFS flow at X ≈ 660, the
u′ distribution develops peaks while the v′ distribution becomes broad and eventually
develops two maxima with a saddle point in between. Further downstream the u′
distribution develops three maxima while the v′ distributions have two (figures 5c and
6c). These distributions suggest that a vortex pairing take place in which some of
the vortices that were originally in line became displaced laterally. When the initial
displacement is comparable to a typical vortex radius, the u′ component develops a
strong peak in the centre, but as the displacement increases this peak may split into
three (figure 5c, X = 1060 mm).

The integrated values of u′2, v′2 and u′v′ across the layer are shown in figure 7. Most
interesting is the correlation between the sign of the integrated Reynolds stress and
dθ/dX (figure 1). Whenever

∫
u′v′dY < 0 so is dθ/dX. The local maxima and minima

of θ match the zero crossings of
∫
u′v′dY perfectly for the SF and TFW experiments.

In a mixing layer, θ represents an integral lengthscale whose integrand vanishes on
both sides of the flow, thus the relationship between u′v′ and θ differs from the
relationship we are accustomed to in a boundary layer. However, since dU/dY in
a mixing layer is always positive, the sign of shear stress determines the sign of the
turbulence production. For this reason, the integrated turbulence production term∫
u′v′(dU/dY )dY is plotted in figure 1.
The integral value of

∫
(u′)2dY is hardly amplified for the SF excitation before

starting to decay slowly with increasing X. In the TFW case, the value of
∫

(u′)2dY
increased by 50%, reached a plateau, and then increased again when

∫
(u′v′)dY > 0.

The value of
∫

(v′)2dY in this case, attained an amplification of 440% just prior to
the location at which

∫
(u′v′)dY became negative at X = 950. In the TFS case the
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amplitude of
∫

(v′)2dY increased in a stepwise manner, first by a factor of 2, then to
3 before resuming continuous growth and attaining a factor of 5.5 at the end of the
measurement domain.

There is an exchange of energy between the two components of turbulence inten-
sity that is most obvious for the SF excitation. For example: a saddle point in the∫

(u′)2dY occurring at X = 550 mm, corresponds to a maximum in the
∫

(v′)2dY . The
relationship between the two fluctuating components in the TFW and TFS exper-
iments is subtler but it exists nontheless. These relationships imply that significant
energy is contained in large two-dimensional eddies as already observed by Gaster et
al. (1985). These relationships will be better understood when the phase-locked and
ensemble-averaged data of a given scale is processed.

3.3. Mean momentum balance

In order to check the two-dimensionality of the flow and to some extent the reliability
of the measurements, the Reynolds stress distributions were calculated from the
two-dimensional momentum equation:

− uv

(U2 −U1)2
=

1

(U2 −U1)2

∫ y

−∞

[
Ū
∂Ū

∂x
+ V̄

∂Ū

∂y
+

∂

∂x
(u′2 − v′2)

]
dy,

while the continuity equation yields:

V̄ = −
∫ y

−∞
∂Ū

∂x
dy + V−∞

where,

V−∞
U2 −U1

=
1

(U2 −U1)2

∫ ∞
−∞

d

dx
[(Ū −U1)Ū + u′2 − v′2]dy.
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The integration was initiated on the high-speed side from an Y location corresponding
to a vanishing velocity gradient. The normal mean velocity component V , used in
the momentum balance was not measured but rather calculated from the continuity
equation because measurements of V with hot wires are notoriously inaccurate in
turbulent shear flows. The values of V at infinity were determined by an iterative
procedure requiring that the Reynolds stress on the opposite side of integration
domain will vanish. This criterion was independent of the side at which the integration
was initiated. The entrainment field results in a pressure gradient that is neglected by
the boundary-layer approximation. Dropping the pressure gradient at the integration
boundaries resulted in an error that was most apparent at the boundaries. Thus, a
free-stream pressure gradient was imposed at the boundaries of the integration. Since
the streamwise velocity gradients on the high-speed boundary of the flow are not
the same as on the low-speed side, the local pressure gradient was calculated from
linearly interpolated values across the layer.

The results of these calculations are marked by solid curves in figure 4. There is
good agreement between calculations and measurements for the TFW and TFS cases
throughout the measurement domain and in region 1 of the SF experiment where
the calculated positive Reynolds stress matches the measured data very well. In the
transition regions marking the boundaries between 1 and 2 or 2 and 3 of SF, the
calculated shear stresses match all the important features of the experiment, including
the appearance of the negative shear stress starting on the high-speed side of the flow.
At x = 560 mm, where dθ/dX = 0, the integral of the calculated shear stress across
the layer also vanished. In region 3, however, there is a considerable discrepancy
between the calculated Reynolds stress and the data measured for the SF experiment.
This raises some questions about the two-dimensionality of the flow near the end of
the measurement domain where the coherent eddies become weak.

3.4. Spectra

The existence of coherent structures in turbulent flows can be detected through
spectral analysis. Even in the absence of external excitation, a spectral peak appearing
in the low-frequency range can often be identified with a wavy disturbance that had
undergone the largest possible amplification. These predominant frequencies may
vary somewhat across the flow because of its divergence in the direction of streaming
(Crighton & Gaster 1976). Spectral analysis can provide extensive information about
energy transfers that take place in externally excited flows.

The power spectra of the v′ fluctuations and the cross-spectra of u′v′ measured at
various x-locations close to the centreline of the layer are shown in figures 8 and
9. The power spectra of u′ are not shown for the sake of brevity because, for a
two-dimensional perturbation, the two distributions (u′ and v′) are related through
continuity and are usually delayed in phase.

For the SF excitation, the fundamental frequency dominates the entire flow (fig-
ure 8a) with a weak harmonic being present at the end of region 1 owing to the
relatively large amplitude of the fundamental. No subharmonic frequency was ob-
served suggesting that ‘vortex pairing’ is inhibited by the single-frequency harmonic
excitation. The cross-spectrum is also dominated by the excitation frequency even
though it is an order of magnitude weaker than the power spectrum (figure 9a). The
streamwise location at which the cross-spectrum becomes negative (indicating the
possible existence of a negative Reynolds stress) corresponds to the location at which
v′ attained its maximum amplitude. Consequently, this is the location at which the
mean flow became neutrally stable relative to the imposed disturbance.
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Similar observations can be made for the TFW case, except that the peak in the
power spectrum at the fundamental frequency is much higher and it occurs at a larger
streamwise location (figure 8b). Two additional observations can be made:

(i) The streamwise amplification of the subharmonic disturbance might not have
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attained its maximum at the end of the measurement domain because it was not
initially amplified. Note that the subharmonic excitation is hardly distinguishable
from the background over 60% of the measurement domain (figures 8a and 9a). We
can correlate this with the low initial amplification rate of the integrated intensity∫
v′2dy (figure 7) observed at small distances for the TFW case.
(ii) On the other hand, there is an early appearance of a wavy disturbance generated

by the interaction of the two excited modes (i.e. 3
2

of the fundamental frequency). This
suggests a transfer of energy from the imposed excitation to the interaction mode.
Once again, the location of the peak in the power spectrum corresponds to the onset
of a negative cross-spectrum at f and 3

2
f.

In the TFS case there is an early dominance of the 3
2
f perturbation that overshadows

the fundamental in spite of the fact that the latter frequency was externally forced
upon the flow (figure 8c). The disturbance at the fundamental frequency, f, attained
its first maximum level around X = 340 mm, while the peak at the interaction
frequency occurred soon thereafter (X = 400 mm) to be followed by the subharmonic
disturbance (around X = 600 mm). The locations of these peaks in the spectrum
correspond also to the locations at which undulations in

∫
v′2dy occur. A second peak

in the fundamental disturbance occurs further downstream (around X = 650 mm)
where the cross-spectrum at that particular frequency is negative. This suggests a
strongly nonlinear interaction among these three modes. The negative cross-spectrum
at the fundamental frequency corresponds to a local plateau in

∫
u′v′dy shown in

figure 7. The dominance of the subarmonic ( 1
2
f) and the interaction ( 3

2
f) modes

in the power and cross-spectra for the TFS excitation is another indication that a
nonlinear mechanism is responsible for the energy exchanges that take place in this
flow. In particular, downstream of the peak in the 3

2
f power spectrum, there is no

corresponding negative cross-spectrum region. It implies that the decay of the 3
2
f

frequency is not due to the negative production or direct energy transfer back to the
mean, but rather, due to transfer to other components through nonlinear interactions.

3.5. Phase-locked and ensemble-averaged data

We may assume that the coherent structures are represented by phase-locked and
ensemble-averaged velocity fluctuations. We may further decompose these coherent
fluctuations in Fourier space to obtain the amplitudes of the leading spectral com-
ponents in the flow. They correspond, of course, to the two forcing frequencies and
their sum, since these were also the leading spectral components observed in figure 8.

The spatial distribution of the prevailing disturbances (i.e. the fundamental, f0,
the subharmonic, 1

2
f0, ,and the leading interaction, 3

2
f0) are shown in figures 10–12

at some selected streamwise locations. The data corresponding to the SF excitation
for 200 < X < 560 mm such as the amplitude distribution of 〈u〉f0

are well known
(Gaster et al. 1985; Weisbrot & Wygnanski 1988) because they represent a linearly
amplifying mode. Around X ≈ 550 mm, this mode ends its amplification cycle and
starts to decay. The amplitude and phase distributions, therefore, represent a typical
array of eddies that span the entire width of the flow.

The initial evolution (for X < 700 mm) of the fundamental frequency in the TFW
experiment is similar to SF forcing. However, toward the end of the measurement
domain (i.e. for X > 1300 mm.) the amplitude distributions of 〈u〉f0

and 〈v〉f0
indicate

that the array of decaying vortices is being displaced laterally in an orderly-staggered
fashion. This is coupled with a typical, distribution of 〈u〉f0/2 that is being amplified
at X > 1040 mm. The distributions of f0 and 1

2
f0 amplitudes for the TFS excitation

are similar to TFW except that they occur much closer to the origin of the flow.
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The stagger of the decaying vortices associated with the fundamental frequency
occurs around X ≈ 400 mm and it evolves into two separate rows of vortices toward
the end of the measurement domain (see the 〈v〉f0

distribution in figure 12b at
X = 1340 mm). The amplitude distributions of 〈u〉f0/2 or 〈v〉f0/2 measured at X >
1000 mm in the TFS case are not familiar from linear stability analysis. Note that
a very small amplitude of 〈v〉f0/2 in the TFW case generates a substantial amplitude
of the nonlinear interaction mode 〈v〉3f0/2. This is particularly visible in the initial
region (X < 500 mm in figure 11b) where the fundamental frequency is being linearly
amplified by extracting energy from the mean motion. At larger distances, most of
the energy is being absorbed by the subharmonic 〈v〉f0/2. In the TFS case, where
the initial amplitude of 〈v〉f0/2 is equal to 〈v〉f0

, the interaction mode 〈v〉3f0/2 is of
comparable amplitude (see figure 12 for X < 500 mm). The relative intensity of the
interaction mode, 〈v〉3f0/2, in both flows decreased after the subharmonic became the
dominant mode (see figures 11 and 12 for X > 1300 mm).

The various phase-locked quantities were integrated across the layer to obtain the
streamwise variations of the coherent energy contained in the individual modes. The
results for

∫ 〈u2〉dy,
∫ 〈v2〉dy,

∫ 〈uv〉dy and their leading coherent quantities are shown
in figures 13(a) to 13(c), respectively. The corresponding total turbulent intensities
discussed previously are replotted here for comparison. The intial value of

∫ 〈u2〉dy
for the SF excitation is approximately 70% of

∫
u′2dy, but it diminishes slowly to

25% at the end of the measurement domain. For the TFW case, the initial level
was only 55% yet it increased to 75% at large X, while for the TFS excitation, this
ratio remained at approximately constant level of 85% (see figure 13a). The ratio
between

∫ 〈v2〉dy and
∫

(v′)2dy is usually larger than for the streamwise component of
velocity and it exceeds 90% for the TFS excitation. The amplification ratios of the
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〈v〉f component at the fundamental frequency are much larger than the amplification
of the 〈u〉f component. For the SF case, for example,

∫ 〈u2〉fdy increased over its
initial value by a mere 25% in region 1, it increased by 70% in region 1 of the TFW
excitation but did not increase at all for TFS (figure 13a). The integrated normal
component,

∫ 〈v2〉fdy, increased by 5-fold for SF, by 20-fold for TFW and only by a
factor of 4 for TFS. The disparity in the amplification between the streamwise and
normal components made the total, integrated turbulent energy behave like

∫ 〈v2〉fdy,
thus the sum of the two components is not presented here. This is also the case for
the subharmonic 〈v〉f/2 which becomes dominant at the end of the measuring domain
for the TFW excitation and dominates the flow beyond X > 600 mm for the TFS
case.

Most of the coherent energy for the SF excitation is contained in the fundamental
frequency with the subharmonic being insignificant everywhere (figure 13). For the
TFS excitation, the initial forcing levels at f0 and at 1

2
f0 were comparable, however,
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while the fundamental hardly amplified the subharmonic soared. It is worth mention-
ing that the interactive mode, 3

2
f0, may play an important role in both TFW and TFS

experiments. Its integrated energy attained the same level as the fundamental around
X = 350 mm in the TFS case while exceeding the energy content of the subharmonic
around X = 500 mm (figure 13b) in the TFW experiment. In both the TFW and
TFS cases, the subharmonic frequency was rapidly amplified after the fundamental
started to decay, suggesting possible energy exchange between the fundamental and
the subharmonic.

The contributions of the individual components to the Reynolds stress are shown in
figure 13(c). At small values of X, most of the coherent Reynolds stress is contained
in the fundamental excitation frequency for the SF and the TFW flows, but not in
the TFS case that contains coherent stresses at f0,

1
2
f0 and many higher harmonics.

These are associated with the high forcing amplitudes. Wherever
∫ 〈uv〉fdy becomes

negative during the SF experiment so does the integrated Reynolds stress
∫
u′v′dy.

The latter changes sign (to become positive again) around X = 840 mm owing to
the contribution of random motion (figure 13c). In the TFW excitation the negative∫ 〈uv〉fdy is offset by the positive

∫ 〈uv〉f/2dy making the overall Reynolds stress still
negative, but over a very short region. The positive contribution of the subharmonic∫ 〈uv〉f/2dy in the TFS case overwhelms the negative Reynolds stress associated with
the fundamental frequency, thus retaining a positive stress throughout the flow. In
fact, the slope of

∫ 〈uv〉f/2dy with X increased tremendously at the very same location
at which

∫ 〈uv〉fdy became negative (i.e. at X = 350 mm). At this very location,
the overall turbulence production for the TFS flow had its minimum (figure 1).
This suggests that the coherent motion associated with the fundamental frequency
transfers energy to the subharmonic and it may do so because of resonance. The
contribution of the 3

2
f0 frequency to the Reynolds stress is negligible for all three

types of excitation used, although its energy content is significant, particularly in the
TFS case. This leads us to believe that the 3

2
f0 mode does not interact with the mean

motion but rather with the two forced waves.

3.6. Vorticity balance

Before discussing further the role of the coherent structures in this flow and their effects
on the vorticity distribution, we should verify that the phase-locked and ensemble-
averaged vorticity field derived from the measured velocity field is indeed correct.
Thus, the vorticity balance was tested. Reynolds decomposition of the equations of
motion into steady and random components renders the turbulent energy budget
that expresses the interaction between the mean motion and the turbulence through
the production term. Triple decomposition into mean, coherent and random motion
(Hussain 1983) yields a coherent energy equation that explains the interaction between
the coherent and the mean energy through the production term; it also provides for
the interaction between the coherent and the random components of energy through
the intermodal production term. However, this equation does not provide information
about the interactions that occur among the coherent motions themselves, and this
can be provided by the vorticity equation. Thus, a vorticity balance will enable us to
explore the nonlinear wave interactions.

According to Hussain (1983), the rate of change of the mean vorticity is given by:

D̄

Dt
Ωi = Ωj

∂Ui

∂xj
+ν

∂2Ωi

∂xk∂xk
+

∂

∂xj
(uCiωCj − ucjωci) +

∂

∂xj
(uriωrj − urjωri),

I II III IV
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where the first term on the right-hand side of the equation represents the stretching
and twisting of the mean vorticity by the mean velocity gradients. The second term
represents the viscous diffusion to the mean vorticity. The third term represents
the time-averaged interaction (i.e. stretching and convection) between the coherent
vorticity and the coherent velocity fluctuations, while the fourth term does the same
for the random motion.

Similarly, the substantial derivative of the coherent vorticity:

DωCi
Dt

= ωCj
∂Ui

∂xj
+Ωj

∂uCi

∂xj
+ν

∂2ωCi

∂xk∂xk
+

∂

∂xj
(uCiωCj − uCiωCj)

I II III IV

− ∂

∂xj
(ωCiuCj − ωCiuCj) − ∂

∂xj
(uCjΩi) +

∂

∂xj
(〈uriωrj〉 − uriωrj)

V VI VII

− ∂

∂xj
(〈ωriurj〉 − ωriurj)

VIII

is balanced by the sum of the eight terms on the right-hand side of the equation.
Now, however, the first term on the right-hand side represents the stretching of the
coherent vorticity by the mean velocity gradients while the second term represents
the stretching of the mean vorticity by the coherent velocity gradients. The third
term yields the viscous diffusion of the coherent vorticity. The fourth and fifth terms
represent the residual coherent (after subtracting the mean) interaction between the
coherent vorticity and the coherent velocity fluctuations. They again represent the
stretching and convection of the coherent vorticity that is analogous to the third
term in the mean vorticity equation. The sixth term represents the convection of
mean vorticity by the coherent eddies, while the seventh and eighth terms the residual
coherent (after subtracting the mean) interaction between the random vorticity and
random velocity fluctuations.

By assuming that the coherent motion is principally two-dimensional, the stream-
wise component of the coherent vortices may be neglected. We may also assume that
the influence of the random motion is secondary and negligible and therefore terms I,
IV and the first portion of term III can be dropped from the mean vorticity equation.
For the same reason, terms I, II, IV, VII and VIII on the right-hand side of the
coherent vorticity equation can also be neglected.

The rate of change of mean vorticity (left-hand side of the mean vorticity equation)
was calculated directly from the measured mean velocities for typical x-locations and
plotted using discrete symbols in figure 14. The lines represent the same quantity that
was calculated from the right-hand side of the equation and required phase-locked
and ensemble-averaged input. The good agreement between the two sets of data
indicates that the measurements and the assumption of two-dimensionality of the
coherent structures are valid. The calculations suggested that the viscous diffusion
term can also be neglected, thus, the rate of change of the mean vorticity is only
caused by the time-averaged convection of the coherent vorticity by the coherent
velocity. In other words, the changing distribution of the mean vorticity across the
flow and consequently the spreading rate of the entire mean velocity field is caused
by the nonlinear interaction between coherent motions.
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Figure 14. Mean vorticity balance. Symbols, measured rate of change of the mean vorticity
(left-hand side of the equation; lines, calculated rate of change from the right-hand side of the
equation. (a) SF. (b) TSW. (c) TFS.

The calculations based on the coherent vorticity equation were not as satisfactory,
particularly near the borders of the mixing layer with the respective uniform streams
and near the centre of the mixing layer. Thus, the results plotted in figure 15 are
for two selected Y -locations on each side of the mixing layer only; they contain,
however, all three data sets: SF, TFW, TFS. The agreement between the calculations
and the measurements (i.e. representing both sides of the coherent vorticity equation) is
qualitatively reasonable. The discrepancies attributed to the lack of two-dimensionality
and to the terms representing the random motion (terms VII and VIII) that probably
should not have been neglected. Since the viscous diffusion term was again negligible,
the rate of change of the coherent vorticity is balanced by terms V and VI in the
equation (i.e. the convection of coherent and mean vorticity by the coherent eddies).

3.7. Coherent vorticity

The isodynes (vorticity contours) plotted in figure 16 were calculated from the
two-dimensional, phase-locked and simply ensemble-averaged data at two phases
separated by a single period of the fundamental excitation, Φfun = 2π. They show
the interactions between adjacent, coherent vortices and they provide a visual basis
for comparing the three experiments, SF, TFW, TFS. The time-averaged results of
these interactions are rooted in the vorticity balance described above. Only the most
relevant isodynes are shown in figure 16 because some of this data was published
elsewhere together with the associated streaklines (Wygnanski & Weisbrot 1988). The
label Φfun in figure 16 is an arbitrarily chosen reference phase to guide the reader to
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Figure 15. Coherent vorticity balance. Symbols, measured rate of change of the coherent vorticity
(left-hand side of the equation); lines, calculated rate of change from the right-hand side of the
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the difference in the two patterns with a time interval of one fundamental period. An
attempt was made to sharpen those images by using the temporal pattern recognition
technique (Zhou et al. 1996), but the improvement in the results did not warrant the
added complexity.

The coherent structures in the SF case (for X > 500 mm, corresponding to the loca-
tion where the linear amplification of the disturbances at the fundamental frequency
ceases) are well represented by a single row of vortices, whose strength diminishes
with increasing X. These vortices are equally spaced in the direction of streaming and
are aligned with the mean centre of the flow (i.e. Y0.5). For the TFW case, adjacent
vortices are staggered slightly around the mean centreline owing to the imposed sub-
harmonic perturbation. This leads to a mutual induction that results in a decrease
of the streamwise distance between them as they proceed downstream (compare
figure 16, numbers 4 and 5), leading to possible pairing beyond the measurement do-
main. The lateral displacement of adjacent pairs of vortices in the TFS case is much
larger, even at small values of X, and that enables their amalgamation within the
measurement domain (figure 16c, numbers 5 and 6). The large, lateral displacement
of these eddies causes the observed distortions in the mean velocity (figure 3), and
results in the peculiar distribution of amplitudes of the leading frequencies contained
in these coherent structures (see figure 12). Since the levels contained in the coherent
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Figure 16. Vorticity contours of the forced mixing layer. ——, fundamental; – – –, subharmonic.

parts of the motion dominate the flow, they may even be observed in the turbulent
intensity distribution shown in figure 5(c).

The vortices displaced toward the high-velocity side (upward in figure 16) in the
TFW case retain their strength much further downstream than the vortices displaced
downward (i.e. toward the low-velocity side). However, the relative strength of adjacent
vortices in the TFS case oscillates with increasing streamwise distance. This suggests
that there is a periodic exchange of vorticity and presumably energy between such
pair of vortices during their amalgamation process. Initially, the strength of the vortex
that is displaced upward increases with X while the vorticity contained in the one
displaced downward (toward the lower-velocity side in figure 16c) is quickly depleted
(compare numbers 2, 3 and 4 in figure 16c). The process is reversed for X > 1200 mm
(see numbers 5 and 6 in figure 16c).

The Reynolds stress distribution is also closely related to the shape and inclination
of the isodynes, as was suggested by Browand & Ho (1983) and by Hussain (1983).
When an eddy represented by a closed vorticity contour is tilted backward (i.e. it is
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Figure 17. Calculated orientation of spanwise coherent vortices. 4, SF; �, TFW; � TFS.

advanced more on the low-velocity side than on the high-velocity side), the Reynolds
stress that it generates is positive. When it is tilted forward, its contribution to
the Reynolds stress is negative. Amplified, wavy perturbations are associated with
vortices that are tilted backward whereas decaying ones are always tilted in the
forward direction (Michalke 1964; Wygnanski & Weisbrot 1988). We may also filter
the phase-locked and ensemble-averaged signals and determine the frequency that
dominates the isodynes and whether that mode decays or amplifies. For example:
eddy number 1 in the SF case (figure 16a) amplified while 2 starts to decay and
the decay rate of 3 is even larger. In the TFW flow, eddy number 1 is amplified, 2
is almost neutral, while the fundamental modes 3 and 4 (shown as single vorticity
concentrations in figure 16b) that are further downstream, decay. The combination
of the two vortices (figure 16b number 5) indicates amplification at the subharmonic
frequency since the line connecting the two centres is tilted backward. A similar
observation can also be made for the TFS experiment where the rate of amplification
of the subharmonic mode increases up to the maximum at vortex pair 5 (angle of
inclination approximately 45◦) and then decreases at large X (6 in figure 16c).

The relation between the inclination of a coherent vortex to the flow direction
(marked by the angle φ in figures 16b and 17b) and the coherent Reynolds stress that
it generates may be quantified by assuming that such an eddy conserves its angular
momentum. Consequently, (u′2 + v′2)r = C , where u′ and v′ are the coherent velocity
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components and r is the distance of the typical point on the control surface from
the centre of the vortex (figure 17b). C is a constant defining the intensity of the
circulation in the vortex.

Assuming that only the orientation of the vortex varies during its movement
downstream, the coherent velocity induced by such a vortex will not change for an
observer moving with the vortex. Thus, the relation between the u′v′ and the vortex
orientation can be found by considering any point that is fixed relative to the vortex.
For simplicity, a point located at the end of the minor axis (see point A marked on
figure 17b) is chosen for this purpose. Thus,

u′ =

√
C

r
sinφ, −v′ =

√
C

r
cosφ, −u′v′ =

C

2r
sin (2φ).

Consequently, ∫ ∞
−∞

∫ ∞
−∞

(−u′v′) dx dy = 1
2
C sin (2φ)

∫ ∞
−∞

∫ ∞
−∞

1

r
dx dy. (1)

For a particular vortex, the maximum or minimum integral of the coherent
Reynolds stress should occur wherever sin (2φ) = ±1 or the inclination of the vortex
is φ = ±45◦. Thus,[∫ ∞

−∞

∫ ∞
−∞

(−u′v′) dx dy

]
max

= 1
2
C

∫ ∞
−∞

∫ ∞
−∞

1

r
dx dy. (2)

Dividing equation (1) by (2) gives,

φ = 1
2
arcsin


∫ ∞
−∞

∫ ∞
−∞

(−u′v′) dx dy
∫ ∞
−∞

∫ ∞
−∞

(−u′v′) dx dy


max


The integration along X can be replaced by the integration over time that yields:

φ = 1
2
arcsin


∫ ∞
−∞

(−u′v′)dy(∫ ∞
−∞

(−u′v′)dy
)

max

 .
The calculated inclination angles of the fundamental coherent vortices based on

the Reynolds stress (figure 13) are shown in figure 17(c) and are compared to the
vorticity contours in figure 17(a). For the SF case, the fundamental component of the
Reynolds stress is maximum at X = 300 mm while vanishing at X = 550 mm before
attaining a minimum negative stress at X = 700 mm. The corresponding calculated
inclination angles of the isodynes (figure 17a) corroborate these findings φ = +45◦
at X = 300 mm, φ = 0◦ at X = 550 mm at φ = −45◦ at X = 700 mm. We may also
compare the calculated values with isodynes (considering the fundamental only) in
the TFW and TFS cases. The good agreement between the two very different sets of
measurements, suggest that the correlation between them is high.

If, however, we are concerned with the coherent Reynolds stress of the subharmonic,
we may consider adjacent pairs of vortices as shown in figures 16b and 16c (numbers
4 and 5) or filter the coherent vorticity so that it includes the subharmonic only.
In the TFS case, the maximum coherent Reynolds stress at the subharmonic frequency
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occurred at X = 1100 mm and it corresponds to φf0/2 = +45◦ (see figure 16c
number 5).

3.8. The conditions for resonance and the definition of a dominant mode

In many instances (for the SF excitation in particular), the energy contained within
the coherent structures increases or decreases depending on the sign of the coherent
Reynolds stress (figure 13c). It implies that the coherent eddies exchange energy
with the mean motion, mostly extracting energy from it, via the production term
〈uv〉dU/dY . This, however, is not always the case, as was observed for the TFS
excitation (figure 13c). Here, the energy contained in the fundamental mode increases
in the direction of streaming (for X > 380 mm) despite the fact that the shear stress
associated with this mode is negative between X = 380 mm and 1060 mm. On the
other hand, the energy contained in the fundamental mode follows the positive
production term and increases beyond X = 1060 mm. The mismatch between the
increase in the energy contained by a specific mode and the production term for
this mode implies that the energy comes from sources other than the mean motion
and a resonance is suspected. Again, the oscillatory interchange of the intensity of
circulation between adjacent pairs of vortices or between the two vortices within a
pair in the TFS flow (figure 16c) also suggest that a resonant interaction might have
taken place between the fundamental and the subharmonic.

The standard conditions for triad resonance in parallel shear flow that is concomi-
tantly excited by two wavy disturbances, f0 and 1

2
f0 are:

αres = αf0
± αf0/2

βres = βf0
± βf0/2

where β is the frequency and α is the wavenumber. Whenever the instabilities are
evolving in space, α is complex (α = αr + iαi) while β is real and determined by
the excitation frequency. In the present experiment βres might be associated with
the subharmonic, 1

2
f0 (that is also the difference between the imposed frequencies),

or with their sum 3
2
f0. In order that the two primary waves will exchange energy

between them, they have to travel together, i.e. their phase velocity, cph = β/αr , has
to be identical over some region. In parallel flows, excited at constant frequencies,
this may be a frequent occurrence because α is constant across the flow (i.e. α = α(x)
only), but in a divergent mean flow of the kind considered presently, the regions of
possible interaction are more limited since α = α(x, y). Another complicating factor is
that energy can be exchanged between the coherent eddies and the mean flow that in
turn responds by changing its rate of divergence in the direction of streaming and/or
by becoming distorted.

The phase velocities of the dominant disturbances were calculated for the entire
flow field and for the three experiments considered. A sample of those cph representing
the variation of the 〈v〉 component with x are plotted in figure 18 for three locations
across the flow: on the high-velocity side (Y ≈ 100 mm), in the centre (Y ≈ 0) and on
the low-velocity side (Y ≈ −110 mm). The 〈v〉 component was selected because it is
the most amplified component of the flow, its amplitude is large in the central region
of the mixing layer and it does not reverse its phase in the centre. The phase velocity of
the fundamental mode that is the only frequency of significance in the SF experiment,
is approximately constant everywhere and roughly equal to Uc = 0.5(U1 + U2). The
phase velocity of the fundamental mode in the TFW case is also constant throughout
the flow, but the other two modes oscillate around it. These oscillations diminish with
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Figure 18. Streamwise phase velocity distribution of the coherent waves. For SF: 4, y = −114 mm;
�, −5 mm; �, 80 mm. For TFW and TFS: 4, fundamental; �, subharmonic; •, 3

2
f0. (a), (d)

Y = 101 mm; (b), (e) −5 mm; (c), (f) −114 mm.

x in the central region of the flow (i.e. at Y = −5 mm) and they are hardly significant
beyond x > 1000 mm (see figure 18b). On the high-speed side of the flow, all three
modes travel together up to x = 1200 mm whereupon the 3

2
f0 mode undergoes a rapid

acceleration (figure 18a). On the low-velocity side of the flow, the three waves locked
in phase at x > 800 mm. For 800 < x < 1200, there is a reasonable lock-in among all
three waves across the entire width of the flow. In this region, however, the mean flow
is slightly contracting (figure 1) owing to the negative production associated with the
decaying fundamental mode (figure 13c).

The ordinate in figure 19 represents the rate of amplification of a given mode
defined by θd/dx{log[

∫
(〈v〉2 + 〈u〉2)fdY ]/[

∫
(〈v〉2 + 〈u〉2)fdY ]0}. When a single wave

develops in a linear manner owing to the instability of the mean motion, this quantity
is analogous to-αiθ/R. The fundamental mode amplifies and decays in a manner con-
sistent with a linear model. During its decay (for x > 800 mm), it probably transfers
some energy to the mean motion because the production term of the fundamental is
negative and the mean flow responds by reversing its lateral rate of spread (figure 1).
A reduction in the energy thickness (that behaves like θ) indicates a gain in the mean
energy.

In TFW, the energy contained in the subharmonic mode keeps increasing (fig-
ure 13) and its rate of increase does not diminish between 800 and 1200 mm from
the origin (figure 19). A linear model would have predicted a reduction in that
rate which would presumably be parallel to the reduction in the fundamental, f0.
The 3

2
f0 component lost energy in this x interval (figure 13), as it also appears in
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figure 19. Thus, in this range of streamwise locations, the amplification and decay
of f0 and 1

2
f0 is enabled by a transport of energy from the mean flow (through

the production of the fundamental) and by decay of the 3
2
f0 mode. The incoherent

motion also decreases in intensity in this region (i.e. for 800 < x < 1200 mm) elim-
inating the possibility of energy transfer to the random, smaller-scale eddies. Thus,
the dominant mode, over most of the measurement domain (for x < 1300 mm, see
figure 13b), is the fundamental mode that behaves in a manner reminiscent of the
linear development.

Under ideal (linear) development, the subharmonic mode should have attained its
largest rate of amplification where the fundamental becomes neutrally stable (i.e.
around x = 850 mm; figure 19a). It could have then amplified further (Kelly 1967) if
it were to receive energy from the fundamental. This is probably not the case in this
flow, since the rate of amplification of the subharmonic remained constant in this
region (i.e. for 850 < x < 1300) and the total mean energy also did not change (the
rate of spread of the mixing layer stopped). The resonance proposed by Kelly might
have occurred at larger distance (i.e. at x > 1300 mm) where the rate of decay of the
fundamental and the rate of amplification of the subharmonic have both increased.
The two modes travelled together (figure 18a–c) and during this interval the amplitude
of the subharmonic increased greatly (figure 13). The most plausible explanation for
this exchange of energy is resonance.

In contrast to the TFW experiment, the phase velocity of the subharmonic in
the TFS cse keeps almost constant throughout the entire measurement domain. The
phase velocities of f0 and 3

2
f0 are almost identical to the subharmonic on both sides

of the flow, but differ from it in the central region for x > 850 mm (figure 18c).
Around this streamwise location, the decay rates of both of these modes attained
their maximum. The fundamental mode starts to amplify for x > 1000 mm, at this x
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its phase velocity is sufficiently different from the subharmonic’s and it can no longer
transfer energy to it. The 3

2
f0 mode follows suit around x = 1200 mm and resumes its

amplification while the amplification rate of the subharmonic decreases in this region
(figure 19). Consequently, the subharmonic appears to be the dominant wave in the
TFS experiment.

Yao (1999) suggested that the mean flow is involved in the resonance and it can be
considered as a wave of zero frequency and an infinite wavelength. It contributes to the
energy transfer between the fundamental and the subharmonic and sometimes has the
role of a catalyst in the process. Therefore, the production term of an individual mode
(e.g. 〈uv〉f0

dU/dy) does not conflict with the concept of resonance. Consequently, the
integrated production rates of f0 and of 1

2
f0 across the flow are plotted on figure 19.

The spectra presented in figure 8 indicate that f0 is the dominant mode in the TFW
experiment. This dominance is shared among all three major waves ( 1

2
f0, f0, and 3

2
f0)

near the origin of the TFS experiment, but it ends with the dominance of 1
2
f0 in the

last 50% of the measurement domain.

4. Concluding remarks
The turbulent mixing layer is very sensitive to external, two-dimensional excitation

because the momentum transport across it is mostly coherent. In some instances,
more than 90% of the ensuing Reynolds stress is even contained within the excitation
frequency. Furthermore, by exciting the flow at two frequencies, a fundamental and a
subharmonic, the resulting Reynolds stresses remain large and coherent throughout
the test section. This is not the case when the flow is excited at a single frequency.
Calculations based on the two-dimensional mean momentum and vorticity equa-
tions suggest that the mean flow and the large coherent eddies are predominantly
two-dimensional. Reasonable mean and coherent vorticity balances were attained
by assuming both components to be two-dimensional and totally neglecting the
influence of random motion. This opened the possibility of correlating the coher-
ent Reynolds stresses to the deformation and orientation of the spanwise coherent
vortices.

The dramatic increase in Reynolds stress resulting from simultaneous excitation
at the fundamental and subharmonic frequencies is associated with a resonance
phenomenon that extracts energy from the mean motion or from the fundamental
excitation frequency depending to a large extent on the level of the excitation. When
the level of the subharmonic frequency is high, it quickly dominates the flow and
the measure of this dominance may be assessed by the linear-like behaviour of this
mode. This might be tested by its relation to the rate of spread of the mean flow. For
a mean velocity profile that can be approximated by a hyperbolic tangent {i.e. U =
1
2
[1 + tanh(y)]}, a linear perturbation attains its maximum amplitude (i.e. becomes

neutrally stable) where fθ/Uc = 0.08. This number was reached at x = 850 mm
for the TFW case where the dominant frequency considered in the above equation
was f0. The same number was attained near the end of the measurement domain
(around x = 1350 mm) for the TFS case, but the dominant frequency considered
in this case was 1

2
f0. Therefore, the quantity fθ/Uc = 0.08 may serve as a first-

order criterion for the determination of the dominant mode in a flow excited by a
multitude of periodic perturbations. All the results collapse approximately onto a
single curve (figure 20b) when the measured fθ/Uc is scaled with RfX/Uc where f is
the dominant frequency, Uc is the measured phase velocity at the dominant frequency
and R = (U1 − U2)/(U1 + U2). This was done for the single-frequency excitation by
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Browand & Ho (1983) whose data (quoting Ho & Huang 1982) is also reproduced in
the figure.

The practical advantage of exciting the flow at two frequencies simultaneously
becomes self evident when we assume that the dimensionless saturation thickness
based on the predominant frequency remains unchanged. The excitation at the fun-
damental frequency is advantageous at small X because the mean flow amplifies this
frequency more rapidly than its subharmonic and it responds by spreading faster
initially (figure 20a). However, if the subharmonic has a substantial amplitude at
the saturation location of the fundamental, it may extract energy from it through
resonance and thus dominate the rate of spread of the mixing layer as long as it did
not reach its new dimensionless saturation value (figure 20b). This technique enables
the mixing layer to become twice as wide at a prescribed distance from its origin.
Since the large coherent eddies control the scalar transport and the rate of chemical
reaction (Roberts 1985) the concomitant excitation of the flow at both frequencies
has its payoffs. It should also have an impact on the effectiveness of the control of
separation by periodic excitation because it depends on the rate of entrainment of
ambient fluid by the mixing layer near a solid surface.
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